Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
1.
J Nat Med ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662303

RESUMO

Two new sesterterpenoids, atractylodes japonica terpenoid acid I (1) and atractylodes japonica terpenoid aldehyde I (2), were isolated from the rhizomes of Atractylodes japonica Koidz. ex Kitam together with ten known compounds (3-12). Their structures were elucidated on the basis of comprehensive spectroscopic analysis (1D/2D NMR, HRESIMS and IR). In addition, all of these isolated compounds were evaluated for their cytotoxic activities against human gastric cancer cell MGC-803 and human hepatocellular cancer cell HepG-2. Most of them exhibited moderate to weak inhibitory effects with IC50 values in the range of 25.15-88.85 µM except for 9-12.

2.
RSC Adv ; 14(16): 11533-11540, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38601706

RESUMO

Lithium (Li) ion batteries have played a great role in modern society as being extensively used in commercial electronic products, electric vehicles, and energy storage systems. However, battery safety issues have gained growing concerns as there might be thermal runaway, fire or even explosion under external abuse. To tackle these safety issues, developing non-flammable electrolytes is a promising strategy. However, the balance between the flame-retarding effect and the electrochemical performance of electrolytes remains a great challenge. Herein, we evaluate the function of ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as an effective flame-retarding additive for lithium-ion batteries. The flammability of electrolytes is greatly suppressed with the introduction of a small amount of PFPN. Moreover, PFPN exhibited excellent compatibility with LiFePO4 (LFP) cathode and graphite (Gr) anode, the electrochemical performances of LFP|Li and Gr|Li half cells are virtually unaffected. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) reveal the stable interphase between PFPN-containing electrolyte and LFP and Gr electrodes. Fourier transform infrared spectroscopy (FT-IR), Raman and nuclear magnetic resonance (NMR) spectra demonstrate the introduction of PFPN only exhibits negligible influence on the solvation structure of electrolyte. Benefiting from these merits of PFPN, the LFP|Gr cell shows desirable long-term cycling performance, which demonstrates great potential for practical application.

3.
Physiol Meas ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599216

RESUMO

OBJECTIVE: Diagnosing chronic obstructive pulmonary disease (COPD) using Impulse Oscillometry (IOS) is challenging due to the high level of clinical expertise it demands from doctors , which limits the clinical application of IOS in screening. The primary aim of this study is to develop a COPD diagnostic model based on machine learning algorithms using IOS test results. Approach:Feature selection was conducted to identify the optimal subset of features from the original feature set, which significantly enhanced the classifier's performance. Additionally, secondary features area of reactance (AX) were derived from the original features based on clinical theory, further enhancing the performance of the classifier. The performance of the model was analyzed and validated using various classifiers and hyperparameter settings to identify the optimal classifier. We collected 528 clinical data examples from the China-Japan Friendship Hospital for training and validating the model. Main results:The proposed model achieved reasonably accurate diagnostic results in the clinical data (accuracy=0.920, specificity=0.941, precision=0.875, recall=0.875). Significance:The results of this study demonstrate that the proposed classifier model, feature selection method, and derived secondary feature AX provide significant auxiliary support in reducing the requirement for clinical experience in COPD diagnosis using IOS. .

4.
Comput Biol Med ; 173: 108314, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513392

RESUMO

Sleep staging is a vital aspect of sleep assessment, serving as a critical tool for evaluating the quality of sleep and identifying sleep disorders. Manual sleep staging is a laborious process, while automatic sleep staging is seldom utilized in clinical practice due to issues related to the inadequate accuracy and interpretability of classification results in automatic sleep staging models. In this work, a hybrid intelligent model is presented for automatic sleep staging, which integrates data intelligence and knowledge intelligence, to attain a balance between accuracy, interpretability, and generalizability in the sleep stage classification. Specifically, it is built on any combination of typical electroencephalography (EEG) and electrooculography (EOG) channels, including a temporal fully convolutional network based on the U-Net architecture and a multi-task feature mapping structure. The experimental results show that, compared to current interpretable automatic sleep staging models, our model achieves a Macro-F1 score of 0.804 on the ISRUC dataset and 0.780 on the Sleep-EDFx dataset. Moreover, we use knowledge intelligence to address issues of excessive jumps and unreasonable sleep stage transitions in the coarse sleep graphs obtained by the model. We also explore the different ways knowledge intelligence affects coarse sleep graphs by combining different sleep graph correction methods. Our research can offer convenient support for sleep physicians, indicating its significant potential in improving the efficiency of clinical sleep staging.


Assuntos
Fases do Sono , Sono , Polissonografia/métodos , Eletroencefalografia/métodos , Eletroculografia/métodos
5.
Small ; : e2400962, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511578

RESUMO

Bioelectrochemical reactions using whole-cell biocatalysts are promising carbon-neutral approaches because of their easy operation, low cost, and sustainability. Bidirectional (outward or inward) electron transfer via exoelectrogens plays the main role in driving bioelectrochemical reactions. However, the low electron transfer efficiency seriously inhibits bioelectrochemical reaction kinetics. Here, a three dimensional and artificial nanoparticles-constituent inverse opal-indium tin oxide (IO-ITO) electrode is fabricated and employed to connect with exoelectrogens (Shewanella loihica PV-4). The above electrode collected 128-fold higher cell density and exhibited a maximum current output approaching 1.5 mA cm-2 within 24 h at anode mode. By changing the IO-ITO electrode to cathode mode, the exoelectrogens exhibited the attractive ability of extracellular electron uptake to reduce fumarate and 16 times higher reverse current than the commercial carbon electrode. Notably, Fe-containing oxide nanoparticles are biologically synthesized at both sides of the outer cell membrane and probably contributed to direct electron transfer with the transmembrane c-type cytochromes. Owing to the efficient electron exchange via artificial and biosynthetic nanoparticles, bioelectrochemical CO2 reduction is also realized at the cathode. This work not only explored the possibility of augmenting bidirectional electron transfer but also provided a new strategy to boost bioelectrochemical reactions by introducing biohybrid nanoparticles.

6.
Bioresour Technol ; 398: 130530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447619

RESUMO

Bio-photoelectrochemical cell (BPEC) is an emerging technology that can convert the solar energy into electricity or chemicals. However, traditional BPEC depending on abiotic electrodes is challenging for microbial/enzymatic catalysis because of the inefficient electron exchange. Here, electroactive bacteria (Shewanella loihica PV-4) were used to reduce graphene oxide (rGO) nanosheets and produce co-assembled rGO/Shewanella biohydrogel as a basic electrode. By adsorbing chlorophyll contained thylakoid membrane, this biohydrogel was fabricated as a photoanode that delivered maximum photocurrent 126 µA/cm3 under visible light. Impressively, the biohydrogel could be served as a cathode in BPEC by forming coculture system with genetically edited Clostridium ljungdahlii. Under illumination, the BPEC with above photoanode and cathode yielded âˆ¼ 5.4 mM butyrate from CO2 reduction, 169 % increase compared to dark process. This work provided a new strategy (nanotechnology combined with synthetic biology) to achieve efficient bioelectricity and valuable chemical production in PBEC.


Assuntos
Fontes de Energia Bioelétrica , Dióxido de Carbono , Grafite , Dióxido de Carbono/metabolismo , Butiratos , Hidrogéis , Eletricidade , Luz , Eletrodos
7.
Mar Pollut Bull ; 200: 116140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342000

RESUMO

China's coastal waters are confronting serious water quality problems, particularly the Hangzhou Bay in the Yangtze River Delta. To find out the underlying cause, we use the Regional Ocean Modeling System (ROMS) to simulate the hydrodynamic characteristics and the evolution of water pollutants. The results show that the hydrodynamic conditions are complicated and the semi-exchange time is 46 days, significantly hindering the dilution and diffusion of water pollutants. Concentrations of each typical pollutant as chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN), and phosphate (PO4) decrease from west to east, showing an obvious enrichment in the coastal region. Source-oriented results show that the inland water pollution of the Yangtze River and the Qiantang River is the key contributor, and the sewage outfalls on the coast near the bay worsen the pollution. This suggests that the government needs to strengthen the management of sources that affect water security.


Assuntos
Poluentes Químicos da Água , Poluentes da Água , Monitoramento Ambiental/métodos , Baías , Hidrodinâmica , Poluentes Químicos da Água/análise , China , Nitrogênio/análise , Rios
8.
Angew Chem Int Ed Engl ; : e202401819, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409658

RESUMO

Density functional theory (DFT) calculations demonstrate neighboring Pt atoms can enhance the metal activity of NiCoP for hydrogen evolution reaction (HER). However, it remains a great challenge to link Pt and NiCoP. Herein, we introduced curvature of bowl-like structure to construct Pt/NiCoP interface by adding a minimal 1 ‰-molar-ratio Pt. The as-prepared sample only requires an overpotential of 26.5 and 181.6 mV to accordingly achieve the current density of 10 and 500 mA cm-2 in 1 M KOH. The water dissociation energy barrier (Ea) has a ~43 % decrease compared with NiCoP counterpart. It also shows an ultrahigh stability with a small degradation rate of 10.6 µV h-1 at harsh conditions (500 mA cm-2 and 50 °C) after 3000 hrs. X-ray photoelectron spectroscopy (XPS), soft X-ray absorption spectroscopy (sXAS), and X-ray absorption fine structure (XAFS) verify the interface electron transfer lowers the valence state of Co/Ni and activates them. DFT calculations also confirm the catalytic transition step of NiCoP can change from Heyrovsky (2.71 eV) to Tafel step (0.51 eV) in the neighborhood of Pt, in accord with the result of the improved Hads at the interface disclosed by in situ electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) tests.

9.
BMC Med Imaging ; 24(1): 31, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308230

RESUMO

PURPOSE: The tumor immune microenvironment is a valuable source of information for predicting prognosis in breast cancer (BRCA) patients. To identify immune cells associated with BRCA patient prognosis from the Cancer Genetic Atlas (TCGA), we established an MRI-based radiomics model for evaluating the degree of immune cell infiltration in breast cancer patients. METHODS: CIBERSORT was utilized to evaluate the degree of infiltration of 22 immune cell types in breast cancer patients from the TCGA database, and both univariate and multivariate Cox regressions were employed to determine the prognostic significance of immune cell infiltration levels in BRCA patients. We identified independent prognostic factors for BRCA patients. Additionally, we obtained imaging features from the Cancer Imaging Archive (TCIA) database for 73 patients who underwent preoperative MRI procedures, and used the Least Absolute Shrinkage and Selection Operator (LASSO) to select the best imaging features for constructing an MRI-based radiomics model for evaluating immune cell infiltration levels in breast cancer patients. RESULTS: According to the results of Cox regression analysis, M2 macrophages were identified as an independent prognostic factor for BRCA patients (HR = 32.288, 95% CI: 3.100-357.478). A total of nine significant features were selected to calculate the radiomics-based score. We established an intratumoral model with AUCs (95% CI) of 0.662 (0.495-0.802) and 0.678 (0.438-0.901) in the training and testing cohorts, respectively. Additionally, a peritumoral model was created with AUCs (95% CI) of 0.826 (0.710-0.924) and 0.752 (0.525-0.957), and a combined model was established with AUCs (95% CI) of 0.843 (0.723-0.938) and 0.744 (0.491-0.965). The peritumoral model demonstrated the highest diagnostic efficacy, with an accuracy, sensitivity, and specificity of 0.773, 0.727, and 0.818, respectively, in its testing cohort. CONCLUSION: The MRI-based radiomics model has the potential to evaluate the degree of immune cell infiltration in breast cancer patients, offering a non-invasive imaging biomarker for assessing the tumor microenvironment in this disease.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , 60570 , Microambiente Tumoral , Prognóstico , Imageamento por Ressonância Magnética
10.
J Biol Chem ; 300(3): 105699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301891

RESUMO

DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.


Assuntos
Queratinas , Lectinas Tipo C , Modelos Moleculares , Humanos , Células Dendríticas/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligantes , Receptor de Manose/química , Mutagênese , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Domínios e Motivos de Interação entre Proteínas , Cristalografia por Raios X
11.
Curr Opin Biotechnol ; 85: 103062, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199036

RESUMO

Protein compartments are distinct structures assembled in living cells via self-assembly or phase separation of specific proteins. Significant efforts have been made to discover their molecular structures and formation mechanisms, as well as their fundamental roles in spatiotemporal control of cellular metabolism. Here, we review the design and construction of synthetic protein compartments for spatial organization of target metabolic pathways toward increased efficiency and specificity. In particular, we highlight the compartmentalization strategies and recent examples to speed up desirable metabolic reactions, to reduce the accumulation of toxic metabolic intermediates, and to switch competing metabolic pathways. We also identify the most important challenges that need to be addressed for exploitation of these designer compartments as a versatile toolkit in metabolic reprogramming.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas
12.
Int J Biol Macromol ; 256(Pt 1): 128289, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000570

RESUMO

Lignocellulosic nanofibril (LCNF) is indispensable in numerous potential applications because of its unsurpassed quintessential characteristics. While it still remains a challenge to assemble LCNF in a facile and environmental economy-first manner. In this work, a simple and green one-step synthetic approach was reported to prepare a series of LCNF-containing versatile hydrogels using deep eutectic solvent (DES). In particular, the LCNF5% hydrogel (namely LCNF5%-gel) in this work perfectly integrated superior stretchability (∼643 %), and displayed a dramatically improved anti-swelling ability (25 %) compared to the control sample (neat DES hydrogel, 2252 %). Simultaneously, the LCNF5% hydrogel presented underwater adhesiveness and outstanding long-term low-temperature resistance (stable at -25 °C for a month). This novel multifunctional hydrogel, prepared by a facile and eco-friendly strategy, is potentially useful in wet adhesion or underwater applications.


Assuntos
Adesivos , Solventes Eutéticos Profundos , Lignina , Humanos , Temperatura , Edema , Hidrogéis
13.
IEEE Trans Cybern ; 54(3): 1921-1933, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37578914

RESUMO

The aim of unsupervised domain adaptation (UDA) is to utilize knowledge from a source domain to enhance the performance of a given target domain. Due to the lack of accessibility to the target domain's labels, UDA's efficacy is highly reliant on the source domain's quality. However, it is often impractical and expensive to obtain an appropriate transferable source domain. To address this issue, we propose a novel UDA setting, source domain reconstruction (SDR), which seeks to construct a new transferable source domain utilizing labeled source samples and unlabeled target samples. SDR has a significant advantage over the conventional method as it is much less expensive to construct a suitable pseudo-source domain rather than collecting an actual transferable source domain in real-world scenarios. To test the practice of SDR, we investigate SDR theoretically. We propose an easily implementable algorithm, the domain MixUp (DMU), which is motivated by the MixUp strategy, to solve the SDR problem. The algorithm can be used to design a UDA framework to significantly enhance the performance of several existing UDA algorithms. Results from extensive experiments conducted on seven benchmarks (66 UDA tasks) indicate that the reconstructed source domain has stronger transferability than the original source domain.

14.
Genomics ; 116(1): 110762, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104669

RESUMO

Monoubiquitination of FANCD2 is a central step in the activation of the Fanconi anemia (FA) pathway after DNA damage. Defects in the FA pathway centered around FANCD2 not only lead to genomic instability but also induce tumorigenesis. At present, few studies have investigated FANCD2 in tumors, and no pan-cancer research on FANCD2 has been conducted. We conducted a comprehensive analysis of the role of FANCD2 in cancer using public databases and other published studies. Moreover, we evaluated the role of FANCD2 in the proliferation, migration and invasion of lung adenocarcinoma cells through in vitro and in vivo experiments, and explored the role of FANCD2 in cisplatin chemoresistance. We investigated the regulatory effect of FANCD2 on the cell cycle of lung adenocarcinoma cells by flow cytometry, and verified this effect by western blotting. FANCD2 expression is elevated in most TCGA tumors and shows a strong positive correlation with poor prognosis in tumor patients. In addition, FANCD2 expression shows strong correlations with immune infiltration, immune checkpoints, the tumor mutation burden (TMB), and microsatellite instability (MSI), which are immune-related features, suggesting that it may be a potential target of tumor immunotherapy. We further found that FANCD2 significantly promotes the proliferation, invasion, and migration abilities of lung adenocarcinoma cells and that its ability to promote cancer cell proliferation may be achieved by modulating the cell cycle. The findings indicate that FANCD2 is a potential biomarker and therapeutic target in cancer treatment by analyzing the oncogenic role of FANCD2 in different tumors.


Assuntos
Carcinogênese , Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Neoplasias , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinogênese/genética , Dano ao DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Neoplasias/genética , Neoplasias/patologia
15.
Bioresour Technol ; 394: 130237, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142913

RESUMO

Magnetic biochar was synthesized via chelation of Fe3+ with carboxymethyl cellulose and pyrolysis for covalently immobilizing Eversa® Transform lipase. The magnetic biochar had 75.8 mg/g lipase loading that was 54.1 % higher than that without magnetism. The immobilized lipase achieved 91.3 mg/g lipase loading with 19.2 U/mg lipase activity after optimization. It showed good thermal and acid stability with 82.5 % and 98.2 % relative activity at 45 °C and pH 4, respectively. Its relative activity was 90.8 % after stored for 30 d at 4 °C. After magnetically separated for 10 cycles, it still kept 70.1 % activity due to the strong covalent bonding. The lipase further catalyzed one-pot esterification and transesterification of high acid value oil (38 mg KOH/g) with 95.7 % biodiesel yield and cycled for 10 times at 85.7 % yield. Kinetic study gave the activation energy of 28.7 kJ/mol. The covalently immobilized lipase could find practical applications.


Assuntos
Carvão Vegetal , Enzimas Imobilizadas , Lipase , Lipase/metabolismo , Enzimas Imobilizadas/metabolismo , Biocombustíveis , Esterificação , Fenômenos Magnéticos
16.
World J Microbiol Biotechnol ; 40(1): 35, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057620

RESUMO

Feather, horn, hoof, and other keratin waste are protein-rich but limited by natural keratinase synthesis, activity, pH, and temperature stability. It is challenging to realize its large-scale application in industries. Bacillus subtilis spores are a safe, efficient, and highly resistant immobilized carrier, which can improve target proteins' resistance. In this research, KERQ7, the keratinase gene of Bacillus tequilensis strain Q7, was fused to the Bacillus subtilis genes coding for the coat proteins CotG and CotB, respectively, and displayed on the surface of B. subtilis spores. Compared with the free KERQ7, the immobilized KERQ7 showed a greater pH tolerance and heat resistance on the spore surface. The activity of CotG-KERQ7 is 1.25 times that of CotB-KERQ7, and CotG-KERQ7 is more stable. When the flexible linker peptide L3 was used to connect CotG and KERQ7, the activity was increased to 131.2 ± 3.4%, and the residual enzyme activity was still 62.5 ± 2.2% after being kept at 60 ℃ for 4 h. These findings indicate that the flexible linker and CotG were more effective for the spore surface display of keratinase to improve stress resistance and promote its wide application in feed, tanning, washing, and other industries.


Assuntos
Proteínas de Bactérias , Esporos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo
17.
Opt Lett ; 48(22): 5875-5878, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966741

RESUMO

We demonstrate the generation of solitons and bound-state solitons in a passively mode-locked fiber laser based on the nonlinear polarization rotation effect by polarization-dependent helical grating. The CO2-laser-inscribed grating has a high polarization-dependent loss of 24.4 dB at 1558.4 nm, which has facilitated the achievement of stable mode locking. The soliton laser could generate 548.9 fs pulses at 1560.59 nm with a spectrum bandwidth of 5.45 nm and a signal-to-noise ratio of 75.2 dB. Through adjustment of the polarization controller and pump power, a bound-state soliton mode-locked pulse with a spectral modulation period of 3.11 nm was achieved and the temporal interval between the two solitons was 2.19 ps. Furthermore, its repetition rate can be easily manipulated by varying the pump power. The results indicated that the polarization-dependent helical grating is an excellent polarizer that could be applied in an ultrafast fiber laser.

18.
Brain Behav ; 13(12): e3260, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938871

RESUMO

OBJECTIVES: To date, the effectiveness of acceptance and commitment therapy (ACT) for acute stroke patients has not been well recognized. The study aimed to discover the effectiveness of group-based ACT in treating depression for acute stroke patients. METHODS: We conducted a randomized controlled trial with 140 acute stroke patients with depression. The ACT intervention comprised seven sessions, of 45-60 min over 4 weeks. Data were collected pre- and post-intervention and at 3-month follow-up, assessing depression, health-related quality of life (HRQoL), psychological flexibility, cognitive fusion, sleep quality, and confidence. RESULTS: Overall, 99.3% of the included patients were assessed as having mild depression. The ACT intervention significantly reduced depression in acute stroke patients in comparison with the control group post-intervention and at 3 months (partial η 2 = . 306 $\eta^{2}=.306$ ). Additionally ACT significantly improved HRQoL-mental component summary, sleep quality, psychological flexibility, cognitive fusion, and confidence compared with control group. CONCLUSIONS: ACT is effective in treating acute stroke patients with depression, and the efficacy was maintained at 3-month follow-up.


Assuntos
Terapia de Aceitação e Compromisso , Acidente Vascular Cerebral , Humanos , Depressão/terapia , Qualidade de Vida , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/psicologia , Resultado do Tratamento
19.
Transl Cancer Res ; 12(9): 2336-2350, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37859740

RESUMO

Background: RNA 5-methylcytosine (m5C) methyltransferases NSUN1 is a member of the NOP2/SUN (NSUN) RNA methyltransferase family. Studies have found that the expression of NSUN1 is elevated in breast and colon cancer and can predict poor prognosis. However, the NSUN1 gene has only been studied in a few tumors. Methods: Single-cell RNA sequencing (scRNA-seq) and Bulk RNA-seq data were used for comprehensive analysis of NSUN1 in cancers. The Human Protein Atlas (HPA) database was used to identify the gene location. Immunofluorescence staining was used to detect NSUN1 subcellular distribution within the nucleus, endoplasmic reticulum (ER), and microtubules of A-431, U-2, U-251 cells. The cBioPortal tool was used to analyze the alteration frequency and mutation type. The epigenetic profile of NSUN1 also was analyzed by using the University of Alabama at Birmingham CANcer data analysis Portal (UCLCAN). Tumor mutation burden (TMB), microsatellite instability (MSI), and immune checkpoint expression in cancers were analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to perform enrichment and visualization. The study was based on online resources and public databases. Results: Elevated NSUN1 expression had been observed in most human cancers. Analysis of scRNA-seq data showed that NSUN1 was highly expressed in immune cells such as T cells, B cells, and dendritic (DC) cells. High NSUN1 expression indicated poor overall survival (OS) and disease-free survival (DFS). The characteristics of genetic alteration, methylation and phosphorylation of NSUN1 were analyzed and higher levels of phosphorylation in tumor tissues were found. In addition, the expression of NSUN1 was closely related to tumor-infiltrating immune cells. At the same time, the expression of NSUN1 was positively correlated with the expression of multiple immune checkpoints. Conclusions: The gene expression profile, survival status, genetic alteration, methylation, phosphorylation and infiltrating immune cells of NSUN1 in human cancers were comprehensively analyzed. The results herein implied that NSUN1 may be an effective biomarker for early cancer diagnosis, prognosis and therapy.

20.
J Am Heart Assoc ; 12(20): e029397, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37804190

RESUMO

Background There are limited data on low-density lipoprotein cholesterol (LDL-C) goal achievement per the 2019 European Society of Cardiology/European Atherosclerosis Society dyslipidemia management guidelines and its impact on long-term outcomes in patients undergoing coronary artery bypass grafting (CABG). We investigated the association between LDL-C levels attained 1 year after CABG and the long-term outcomes. Methods and Results A total of 2072 patients diagnosed with multivessel coronary artery disease and undergoing CABG between 2011 and 2020 were included. Patients were categorized by lipid levels at 1 year after CABG, and the occurrence of major adverse cardiovascular and cerebrovascular events (MACCEs) was evaluated. The goal of LDL-C <1.40 mmol/L was attained in only 310 patients (14.9%). During a mean follow-up of 4.2 years after the index 1-year assessment, 25.0% of the patients experienced MACCEs. Multivariable-adjusted hazard ratios (95% CIs) for MACCEs, cardiac death, nonfatal myocardial infarction, nonfatal stroke, revascularization, and cardiac rehospitalization were 1.94 (1.41-2.67), 2.27 (1.29-3.99), 2.45 (1.55-3.88), 1.17 (0.63-2.21), 2.47 (1.31-4.66), and 1.87 (1.19-2.95), respectively, in patients with LDL-C ≥2.60 mmol/L, compared with patients with LDL-C <1.40 mmol/L. The LDL-C levels at 1-year post-CABG were independently associated with long-term MACCEs. Conclusions This retrospective analysis demonstrates that lipid goals are not attained in the vast majority of patients at 1 year after CABG, which is independently associated with the increased risk of long-term MACCEs. Further prospective, multicenter studies are warranted to validate if intensive lipid management could improve the outcomes of patients undergoing CABG.


Assuntos
Doença da Artéria Coronariana , Dislipidemias , Intervenção Coronária Percutânea , Humanos , Estudos Retrospectivos , LDL-Colesterol , Resultado do Tratamento , Ponte de Artéria Coronária/efeitos adversos , Doença da Artéria Coronariana/cirurgia , Doença da Artéria Coronariana/etiologia , Dislipidemias/diagnóstico , Dislipidemias/tratamento farmacológico , Dislipidemias/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...